Name: \qquad SCH4U-Test \#4
Ms. S. Nikoudad
Date: Fall 2016

Knowledge/ Understanding	Thinking/Inquiry	Communication	Application	Total
10	10	9	13	42

Knowledge/Understanding:

[..
1- An equation representing the reaction of a weak acid with water is:
A. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
B. $\mathrm{NH}+\mathrm{HO} \rightleftarrows \mathrm{NH}^{+}+\mathrm{OH}^{-}$
C. $\mathrm{HCO}^{-} \mathrm{HO} \rightleftarrows \mathrm{HCO}+\mathrm{OH}^{-}$
D. $\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$

2- The conjugate acid of $\mathrm{C}_{6} \mathrm{H}_{5} 0^{-}$is
A. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
C. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{2-}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}^{+}$

3- In a solution with a pOH of 4.22, the [OH-] is
A. $1.7 \times 10^{-10} \mathrm{M}$
B. $6.0 \times 10^{-5} \mathrm{M}$
C. $6.3 \times 10^{-1} \mathrm{M}$
D. $1.7 \times 10^{4} \mathrm{M}$

4- The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution with pH of 0.253 is
A. $\quad 5.58 \times 10^{-15} \mathrm{M}$
B. $1.79 \times 10^{-14} \mathrm{M}$
C. $5.58 \times 10^{-1} \mathrm{M}$
D. $5.97 \times 10^{-1} \mathrm{M}$

5- The ionization of water at room temperature is represented by
A. $\mathrm{H}_{2} \mathrm{O} \rightleftarrows 2 \mathrm{H}^{+}+\mathrm{O}^{2-}$
B. $2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
C. $2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
D. $2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

6- Consider the following:

$$
\begin{aligned}
& \mathrm{I}_{2} \mathrm{CO}_{3}+\mathrm{F}^{-} \rightleftarrows \mathrm{HCO}_{3}^{-}+\mathrm{HF} \\
& \text { II } \mathrm{HCO}_{3}^{-}+\mathrm{HC}_{2} \mathrm{O}_{4}^{--} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \\
& \text { III } \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}^{-} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}
\end{aligned}
$$

The $\mathrm{HCO}_{3}{ }^{-}$is a base / conjugate base in
A. I only
B. I and II only
C. II and III only
D. I , II, and III

7- The pOH of 0.015 M HCl solution is
A. 0.97
B. 1.80
C. 12.18
D. 13.03

8- Calculate the pH in a 0.200 M solution of $\mathrm{Sr}(\mathrm{OH})_{2}$.
A 1.40
B 1.70
C 13.30
D 13.60

9- In which one of the following equations are the Bronsted-Lowry acids and bases all correctly identified?

	Acid	+	Base	\rightleftarrows	Base +
			Acid		
A	$\mathrm{H}_{2} \mathrm{O}_{2}$		$\mathrm{SO}_{3}{ }^{2-}$		\rightleftarrows
B	$\mathrm{H}_{2} \mathrm{O}_{2}$		$\mathrm{HO}_{2}{ }^{-}$		
CO	$\mathrm{SO}_{3}{ }^{2-}$		\rightleftarrows	$\mathrm{HSO}_{3}{ }^{-}$	$\mathrm{HO}_{2}{ }^{-}$
D	$\mathrm{SO}_{3}{ }^{2-}$		$\mathrm{H}_{2} \mathrm{O}_{2}$	\rightleftarrows	$\mathrm{HO}_{2}{ }^{-}$
	$\mathrm{H}_{2} \mathrm{O}_{2}$		\rightleftarrows	$\mathrm{HSO}_{3}{ }^{-}$	$\mathrm{HO}_{3}{ }^{-}$

10- Both acidic and basic solutions
A. taste sour
B. feel slippery
C. conduct electricity
D. turn blue litmus red

Thinking/Inquiry:
[..................../10]

1- In the manufacture of an important organic solvent, toluene, (C7H8), from methyl cyclohexane, (C7H14), the following reaction occurs:

$$
\mathrm{C}_{7} \mathrm{H}_{14(\mathrm{~g})} \rightleftharpoons \mathrm{C}_{7} \mathrm{H}_{8(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

Calorimetric studies show that the forward reaction is endothermic. Based on this information, which one , if any, of the following additional changes would increase the concentration of C7H8 at equilibrium?
a) increase the pressure at constant temperature
b) increase the temperature at constant pressure
c) decrease the concentration of C 7 H 8
d)) add a catalyst
e) None of the above

2- A 1.00 L flask contains a gaseous equilibrium system. The addition of reactants to this flask results in a
A. shift left and a decrease in the concentration of the products.
B. shift left and a increase in the concentration of the products.
C. shift right and a decrease in the concentration of the products.
D. shift right and a increase in the concentration of the products.

3- Consider the following equilibrium: $\quad \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+$ heat $\rightleftarrows \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
In which of the following will both stresses results in more $C O(\mathrm{~g})$?
A. a decrease in temperature and a decrease in volume
B. an increase in temperature and a decrease in volume
C. a decrease in temperature and an increase in volume
D. an increase in temperature and an increase in volume

4-Consider the following equilibrium: $4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows 4 \mathrm{KOH}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g})$ The equilibrium expression is
A. $\mathrm{Keq}=[\mathrm{KOH}]^{4}\left[\mathrm{O}_{2}\right]^{3} /\left[\mathrm{KO}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
B. $\mathrm{Keq}=\left[\mathrm{O}_{2}\right]^{3} /\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
C. $\mathrm{Keq}=\left[\mathrm{KO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /[\mathrm{KOH}]^{4}\left[\mathrm{O}_{2}\right]^{3}$
D. $\mathrm{Keq}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /\left[\mathrm{O}_{2}\right]^{3}$

5- Consider the following equilibrium: $\quad 2 \mathrm{NO}_{(\mathrm{g})} \rightleftarrows \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{Keq}=2.01 \times 10^{-30}$
The value of the equilibrium constant indicates that the
a. $[\mathrm{NO}]^{2}<\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
b. $[\mathrm{NO}]^{2}>\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
b. $\quad[\mathrm{NO}]=\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$
d. $[\mathrm{NO}]>\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]$

6-Consider the following equilibrium:
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \nleftarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g)+$ energy
The equilibrium does not shift with a change in
a. volume
b. temperature
c. concentration of products
d. concentration of reactants

7-Consider the following equilibrium:

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\text { energy } \rightleftarrows \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

When the temperature is decreased, the equilibrium shifts
a. left and the $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ increases
b. left and the $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ decreases
c. right and the $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ increases
d. right and the $\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ decreases

8- Consider the following reaction: $\quad C_{(s)}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H=-74.8 \mathrm{~kJ}$ Which of the following will cause a decrease in the value of the Keq?
a. Decreasing [H_{2}]
b. decreasing the volume
c. Finely powdering the $\mathrm{C}(\mathrm{s})$
d. increasing the temperature

9- Consider the following equilibrium: $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \nLeftarrow 3 \mathrm{O}_{2}(\mathrm{~g}) \quad$ Keq $=65$

Initially 0.10 mole of O_{3} and 0.10 mole of O_{2} are placed in a 1.0 L container, Which of the following describes the changes in concentrations as the reaction proceeds towards equilibrium?

$$
\begin{equation*}
\left[\mathrm{O}_{3}\right] \tag{2}
\end{equation*}
$$

A. decreases
decreases
B. decreases
increases
C. increases
decreases
D. increases
increases

10- The conjugate base of an acid is produced by
a. adding a proton to the acid
b. adding an electron to the acid
c. removing a proton from the acid
d. removing an electron from the acid

Communication:

[................. /9]
1- Explain why the colour of container first gets darker and then gets lighter when compressed in a syringe. The equation is:
\qquad

$$
\underset{\text { colourless }}{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}} \rightleftarrows \underset{\text { dark brown }}{2 \mathrm{NO}_{2(\mathrm{~g})}}
$$

2- Consider the following system:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-99 \mathrm{~kJ} / \mathrm{mol}
$$

List four things which could be done in order to increase the formation of SO_{3} ? (......../2)

3-Consider the following reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat The diagram that represents the relationship between rate and temperature is: (.........../1)
Rate
B.

Temperature
D.

4- In a container at $450^{\circ} \mathrm{C}, N_{2}$ and H_{2} react to produce $N H_{3}$. $\mathrm{K}=0.064$. When the system is analyzed, $\left[\mathrm{N}_{2}\right]=4.0 \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2}\right]$ $=2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{NH}_{3}\right]=2.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. Is the system at equilibrium, if not, predict the direction in which the reaction will proceed. (......./3)

$$
\mathrm{N}_{2(g)}+3 H_{2(g)} \leftrightarrow 2 \mathrm{NH}_{3(g)}
$$

Application:

1- Consider the following equilibrium: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HI}(\mathrm{g})$ At equilibrium $\left[\mathrm{H}_{2}\right]=0.00220 \mathrm{M}$, $\left[\mathrm{I}_{2}\right]=0.00220 \mathrm{M}$, and $[\mathrm{HI}]=0.0156 \mathrm{M}$. Calculate the value of the Keq.

2-What is the pOH of a solution prepared by adding 0.50 moles of NaOH to prepare 0.50 L of solution?(....../2)

3-Determine if a precipitate forms if 5.0 mL of $3.0 \times 10^{-4} \mathrm{M} \mathrm{Pb}(\mathrm{NO} 3) 2$ is mixed with 5.0 mL of $3.0 \times 10^{-4} \mathrm{M} \mathrm{Na} 2 \mathrm{CrO} 4$. The value for $K_{\text {sp }}$ of PbCrO 4 is $2 \times 10^{-14} .(\ldots \ldots \ldots . . / 5)$

4- Calculate the percent dissociation of a $3.1 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ solution of a weak acid, HA , if the pH of the solution is 6.10 . (............../2)

5- The pOH of 0.17 M of CH 3 COOH is 11.13 . Calculate the Ka for this acid. (......../3)

